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Abstract

The Knox method, like other tests for space-time interaction, is biased in
situations in which there are geographical population shifts; that is, when
there are different percentages of population growth in different regions. In
this paper, the size of the population shift bias is investigated for the Knox test,
and it is shown that it can be a considerable problem. This paper then presents
a Monte Carlo method for constructing unbiased space-time interaction tests,
illustrating the method for the Knox test and for a combined Knox test.
Practical implications are discussed in terms of the interpretation of past re-
sults and the design of future studies.
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Introduction

Space-time interaction tests are used to evaluate whether there is space-time clustering
of events after purely spatial and purely temporal clustering are adjusted for. These
tests are frequently applied in epidemiological studies, in which it is of interest to know
whether cases of some disease are more clustered than would be expected based on the
underlying geographical population distribution and on any purely temporal trend.
Two excellent surveys on space-time interaction tests have been written by Mantel (1)
and Williams (2). Comparative evaluations and power studies have been done by
Chen, Mantel, and Klingberg (3) and by Jacquez (4).

The most widely used statistical technique for testing space-time interaction was
developed by Knox (5). In the Knox test, the time and geographical location of each
case are noted, and the distance between each possible pair of cases is calculated in
terms of both time and space. If many of the cases that are “close” in time are also
“close” in space (“close” is defined by the user), or vice versa, then there is space-time
interaction. This could be an indication that a disease is infectious or that it is
caused by some other type of agent that appears locally at specific times, such as food
poisoning.

In a survey of epidemiological articles published between 1960 and 1990, Daniel
Wartenberg and Michael Greenberg (6) found 59 different studies that used the Knox
method. Many of these were concerned with leukemia, and the results from such stud-
ies have been used as evidence supporting a viral etiology of the disease (7,8).

The Knox test is an elegant and, in many ways, attractive method. For example, it
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is simple and straightforward to calculate the test statistic, and using the test requires
knowledge only of cases, not controls. There is, however, a well-known problem with
the method.

Mantel (1) pointed out that the Knox test is biased if the rate of population growth
is not constant for all geographic sub-areas. We call this the population shift bias. Shifts in
the population distribution create space-time interaction among any random sample of
individuals, including sets of cases generated under the null hypothesis of equal dis-
ease risk. The Knox statistic is constructed so as to pick up any type of space-time in-
teraction; it does not distinguish whether that interaction is due to shifting population
distributions or to some disease-related phenomenon. This is not a flaw of the test per
se, and is not a problem if one is looking for any type of space-time interaction.
However, interest is typically focused—as in epidemiology—on disease-related phe-
nomena, not shifts in population distribution, so the latter should be adjusted for.

While the existence of the population shift bias has long been known, the magni-
tude of the bias has not been studied for any real datasets, and the bias has typically
been ignored in practical applications. In the “Estimation of the Population Shift Bias”
section, the bias of the ordinary Knox test is estimated for two different datasets: the
child population in Sweden from 1976 to 1994 (a fairly stable population) and the total
population in New Mexico (where there have been large population shifts) from 1973
to 1991. The estimations show that the bias is considerable for some cases.

Klauber and Mustacchi (9) suggested that the population shift bias could be re-
duced by dividing the data into several parts corresponding to different time periods.
Within these parts, the population would be more stable. A test statistic would then be
calculated separately for each part, and the statistics would be summed to get an over-
all test. This method reduces the bias but does not eliminate it. Unfortunately, it also de-
creases the power of the test; pairs of cases falling in different data parts would not be
used, leading to loss of information.

A simple unbiased version of the Knox test is presented in the section entitled “An
Unbiased Knox Test.” This test adjusts not only for purely spatial and purely temporal
variations, but also for the space-time interaction inherent in the background popula-
tion. It does so without the loss of power associated with the Klauber-Mustacchi ap-
proach. Its one drawback is that it requires knowledge of the underlying population
distribution.

While this paper is focused on the Knox method, which is the most commonly used
space-time interaction test, other space-time interaction tests suffer from the same pop-
ulation shift bias. This includes the methods proposed by David and Barton (10),
Mantel (1), Pike and Smith (11), Diggle et al. (12), Jacquez (4), and Baker (13). This
paper’s approach for constructing an unbiased Knox test can also be used to construct
unbiased versions of these other methods.

A second issue with the Knox method relates to the choice of critical distances to
define which pairs of cases are close in space and time respectively. Unless the investi-
gator has a fairly clear idea of the scale at which clustering may occur, this is a problem.
Separate tests are often performed for a number of different critical distances (e.g.,
Gilman and Knox, 1995 [14]). It is possible to do a Bonferroni-type adjustment for the
multiple testing inherent in such a procedure, but because the test statistics calculated
for adjacent critical distances are highly correlated, there is loss of power when using
such a method. In practice it is seldom used. Baker (13) has presented a combined Knox
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test, providing a single hypothesis test with multiple critical distances. The approach
presented in the section entitled “An Unbiased Combined Knox Test” uses the same
basic idea to deal with multiple testing.

If the simple modification to the Knox test described here were implemented in ac-
tual studies, the value of those studies would greatly increase. There would no longer
be any uncertainty about whether a significant result is due simply to shifts in the geo-
graphical population distribution, and there would be no issue of multiple testing. The
Knox test is an intuitive, elegant method. With its major weaknesses resolved, we hope,
it will continue to be used for years to come.

The Knox Test

Let n be the total number of cases, so that there are N=n(n–1)/2 distinct pairs of cases.
Let Nt be the number of case pairs that are closer to each other in time, compared to
some specified temporal distance. Likewise, let Ns be the number of pairs close in space
as defined by some geographic distance. Finally, let X be the number of case pairs that
are close both in time and space.

The observed value of X is the test statistic of the Knox method (5). To adjust for
purely spatial and purely temporal inhomogeneities in the data, the test statistic is eval-
uated conditionally on Nt and Ns. Under the null hypothesis of no space-time interac-
tion, the expected value of X is E[X|Nt,Ns]=NtNs/N (15).

Knox (5) conjectured that X is approximately Poisson-distributed. Barton and
David (15) showed this to be true when Nt and Ns are small compared to N, in the sense
that the variance of X is then approximately equal to its expected value. More impor-
tantly, by application of graph theory and by also conditioning on the second-order
terms, they obtained an exact formula for the variance:

where N2s is the number of pairs of case pairs close in space that have one case in com-
mon, and where N2t is defined equivalently for time.

In practical applications, different approximations of the test statistic’s distribution
have been used. The Cluster software package, written by Aldrich and Drane (16), uses
the Poisson approximation, as originally proposed by Knox (5). Gilman and Knox (14)
and many others have done likewise, except that they have used the normal approxi-
mation for the Poisson distribution, keeping the variance equal to the mean. We will call
this approach the Poisson-based approximation. An alternative approach is to use a nor-
mal approximation with the mean and variance given by Barton and David (15). We
will call this the Barton-David-based approximation. Yet another option, originally pro-
posed by Mantel (1), is to use Monte Carlo hypothesis testing (17) by permuting the
times among the fixed spatial locations. This is implemented as part of the Stat! soft-
ware package (18); Petridou et al. (8) provide one example of its use.

Before estimating the population shift bias, as in the next section, it is important
to look at any potential bias due to the distributional assumptions of the Knox test
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statistic. Table 1 contains bias estimates for the Poisson- and Barton-David-based ap-
proximations when the Knox test is applied to a hypothetical child population in
Sweden. For all years from 1976 to 1994, the population is artificially fixed at the 1982
level so that there are no population shifts. The data are aggregated into 2,507 parishes.
The parish and month were randomly selected for each of 1,000 and 10,000 cases in pro-
portion to the 1982 population for each parish, and in proportion to the length of each
month.

When Nt and Ns are small compared to N, the Poisson-based approximation works
well. When Nt and Ns are larger, though, there is some bias. This is as expected based
on the theoretical results of Barton and David (15). The Barton-David-based approxi-
mation, on the other hand, works well across the board for the Swedish data. This is im-
portant to remember when estimating the population shift bias, as in the next section.
By definition, the Monte Carlo procedure provides an unbiased test when there are no
shifts in the population distribution.

Estimation of the Population Shift Bias

Differential population growth can be caused by internal migration between different
regions, by geographically differential emigration or immigration rates, or by geo-
graphically differential birth or death rates. If the disease risk is related to age, the bias
can also be caused by different age structures in different regions, whether that struc-
ture changes over time or not; as the population ages, the age-specific population
counts change over time to different degrees in different regions.

The magnitude of the population shift bias of any test for space-time interaction de-
pends on the specific geographic area and time period under study. In general, shorter
overall time periods result in less bias because there is less time for population shifts to
occur, as pointed out by Klauber and Mustacchi (9). Nothing general can be said about
specific geographic areas. To give some idea of the extent of the bias, we have calculated
the population shift bias of the ordinary Knox test for two different datasets.

The first dataset is the child population in Sweden from 1976 to 1994, aggregated to
the 2,507 parishes. The second dataset is the total New Mexico population from 1973 to
1991, aggregated to 32 counties. (The second dataset is available at http://
dcp.nci.nih.gov/BB/datasets.html.) For the New Mexico dataset, Cibola and Valencia
are counted as one county for the whole time period even though they became two dif-
ferent counties in 1981. The geographic distance between cases is the distance between
the parish/county centroids to which they belong. When the critical geographic dis-
tance is 0, only those cases located in the same parish are considered spatial neighbors.
For both datasets, the case times are noted in months. When the critical temporal dis-
tance is zero months, neighboring cases are only those occurring in the same calendar
month; when it is three months, neighboring cases are those occurring in months at
most three calendar months apart (e.g., January and April, but not January and May);
and so on.

To put these datasets in a proper context, the population growth for various subre-
gions is provided in Table 2. For the child population in Sweden, Table 2 shows the pop-
ulation growth in each of the country’s 24 counties, or läns. Table 2 shows only part of
the picture, though; the data were analyzed at the much finer level of 2,507 parishes.
The percentage of change, naturally, varies more for the smaller parishes. The 470
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Note: Cases were randomly generated according to the 1982 population, so there is no population shift bias.
The bias due to the Poisson and Barton-David approximations for the distribution of the test statistics is the
difference between the numbers reported and the nominal significance level.

Table 1 Estimated True Significance Levels for the Ordinary Knox Test When Applied to the
Childhood Population in Sweden



parishes with more than 1,000 children in 1976 had an average population decrease of
2.5% from 1976 to 1994, with a standard deviation of 30.4 percentage points. The equiv-
alent standard deviations for other subgroups were 33.3 for 275 parishes with 1976 pop-
ulations in the 500–1000 range, 31.4 for 486 parishes in the 200–500 range, 72.0 for 467
parishes in the 100–200 range, and 122.8 for 809 parishes with 1976 populations of less
than 100. The population growth in New Mexico is also presented in Table 2. Between
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1973 and 1991, one county’s population doubled while many other counties had a fairly
constant population.

To estimate the population shift bias, cases were randomly assigned to a parish (or
county, for New Mexico) and to a particular month with probability proportional to the
actual population in that parish during that month. In this way, the cases were ran-
domized with population shifts taken into account. The population for a particular
month was obtained through linear interpolation, using yearly population data for
New Mexico and the years 1976, 1982, 1988, and 1994 for Sweden. Separate calculations
were done for 1,000, 4,000, and 10,000 randomized cases. For each random Monte Carlo
replication of the fixed number of cases, the test statistic was calculated and compared
with its nominal critical region using the Barton-David distributional approximation.
Without bias, 5% of the test statistics from the Monte Carlo replications should fall
within the critical region. The actual numbers are given in Tables 3 and 4.

The population shift bias for the Swedish data is the difference between the num-
bers reported in Table 3 and those reported in Table 1 for the Barton-David approxima-
tion. The total bias is the difference between Table 3 and the nominal significance levels.
For the Swedish data, there is very little bias using the original Knox test when the total
number of cases observed is 1,000. With more cases, the bias increases. It is a consider-
able problem with 10,000 cases observed.

For New Mexico, the bias is considerable for 1,000, 4,000, or 10,000 cases, as can be
seen from Table 4. Note that it is not the total population increase of 40% that causes the
bias. If the increase were the same in all counties, the population shift bias would be
zero.

The bias estimates in Tables 1, 3, and 4 were calculated using 20,000 random repli-
cations of the fixed number of cases. The 95% confidence intervals are ±0.007 when the
estimate is around 0.50, and ±0.003 when the estimate is around 0.05. If the Poisson ap-
proximation is used instead of the Barton-David approximation, the total bias is about
the same or higher (not shown), as would be expected considering Table 1.

As Tables 3 and 4 show, the population shift bias increases with an increased num-
ber of total cases observed. Why? By definition, the population shift bias is the proba-
bility that a method will detect space-time interaction due to the population shift when
there is no space-time interaction of any other kind. That is, a method’s population shift
bias is identical to its power to detect a population shift using a random sample from
the population. The larger the random sample, the greater the power; by consequence,
the more cases, the bigger the population shift bias. In a sense, this is a Catch-22 situa-
tion. We could reduce the population shift bias by analyzing a smaller number of cases,
but that would also reduce the power to detect space-time interaction due to any bio-
logical phenomena of interest.

The population shift bias also varies with the choice of critical geographical dis-
tance. Such differences are data-dependent. Consider a situation in which the child
population over time is identical in several cities, but in which, within those cities, there
is a continuous child population shift. New suburbs have many small children who
grow older together with the suburbs until they move out and leave a predominantly
adult population behind. This will lead to a population shift bias for small values of the
critical geographic distance, but not necessarily for large ones. On the other hand, in-
creased critical distances will result in more space-time case pairs, increasing the power
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Note: The difference between these numbers and those in Table 1 is the population shift bias.

Table 3 Estimated True Significance Levels for the Ordinary Knox Test Using the Barton-
David Approximation, When the Nominal Levels Are α=0.05 and  α=0.01, for the Childhood
Population in Sweden, 1976–1994



to detect a population shift and thus increasing the population shift bias. Hence, differ-
ent phenomena may work in opposite directions.

The population shift bias also depends on the level of aggregation. If there are very
local population shifts, then it is possible to reduce the bias of the ordinary Knox test by
combining areas in which the shifts are in opposite directions from the overall average
population growth. Taking this one step further, it is worth pointing out that one way
to construct an unbiased Knox test is to aggregate data in such a way that each aggre-
gated area has the same population growth curve. In practice, though, this is hard to ac-
complish because populations aggregated into the same area must be very close to each
other for the test to be meaningful. A better way to obtain an unbiased test is proposed
in the following section.
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An Unbiased Knox Test

To obtain an unbiased version of the Knox test, it is necessary to know the background
population and its temporal trends. Using such data, one can obtain random replica-
tions of cases generated under the null hypothesis. These replications can then be used
for hypothesis testing using the Monte Carlo procedure. Randomizing in proportion to
the population size at each time and place adjusts for the population shifts.

In creating an unbiased Knox test, one must be careful as to how to implement the
Monte Carlo method. For example, the Monte Carlo approach suggested by Mantel (1)
does not work for this purpose. This is because Mantel proposes to randomize cases
using random permutations of spatial and temporal observations conditioned on the
set of spatial and set of temporal values, rather than randomizing completely new cases
from the background population. The former is the preferred way to do the test when
there are no population shifts—when it is not necessary to make distributional approx-
imations—but it does not eliminate the population shift bias.

Neither does it work to simply calculate the Knox test statistic X and, in the normal
Monte Carlo fashion, compare its values in the real and randomized datasets. Doing so
would give a valid unbiased test, but the value of the test statistic would be high due
to purely spatial clustering, purely temporal clustering, or temporal trends. Hence, it
would no longer be a test for space-time interaction, but instead a test for global space-
time clustering, as discussed by Kulldorff (19).

A way to eliminate the population shift bias and at the same time retain the space-
time interaction test is as follows:

1. Generate random datasets for which each random replication has the same
number of cases as the real data. The location and time of each case should be
random, with probability proportional to the population size for that location
and time or to the expected number of cases under the null hypothesis, adjusted
for potential confounders such as age.

2. Calculate the test statistic X for the real and random datasets.
3. For each dataset, normalize X using the Barton-David-based approximation:

This is necessary because Nt, Ns, N2s, and N2t change in each simulated
dataset.

4. Rank N(X) for the real and random datasets. If the former is among the 5% high-
est, reject the null hypothesis of no space-time interaction at the 5% significance
level. The corresponding simulated p-value is R/(REP+1), where R is the rank
of N(X) from the real dataset and REP is the number of Monte Carlo replications.

For the third step we chose to use the Barton-David-based approximation. Using
the Poisson-based approximation will also give an unbiased test. Because only the rel-
ative rank is of interest, the accuracy of the approximation is unimportant as long as the
ranking it creates is unchanged. The Monte Carlo option for approximating the distri-
bution of X is less practical, as choosing it would mean running one Monte Carlo sim-
ulation embedded within another, quite a time-consuming task even for a computer.
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Table 5 shows the application of the unbiased Knox test to lung cancer in New
Mexico from 1973 to 1991. These data were collected by the New Mexico Tumor
Registry for the National Cancer Institute’s Surveillance, Epidemiology, and End
Results (SEER) program. Table 6 presents the unbiased Knox test as applied to all types
of childhood leukemia in Sweden from 1973 to 1994. In both cases, 19,999 Monte Carlo
replications were performed. The resulting p-values are given for a range of spatial and
temporal critical distances. For comparison, the nominal but biased p-values using the
Poisson and Barton-David approximations are given in parentheses.

For the lung cancer data, the unbiased Knox test gives no evidence of any space-
time interaction. In contrast, when the population shift bias is not adjusted for, some of
the p-values are very small, giving a false impression of space-time interaction. For the
leukemia data, out of 30 tests for different critical distances, 8 are significant at the 0.05
level when the unbiased Knox test is used. This may indicate some level of space-time
interaction, but it is hard to judge because there is considerable multiple testing in-
volved. This is discussed in the next section.

An Unbiased Combined Knox Test

When the ordinary Knox test is applied, a key feature is the choice of critical distances.
Because the scale at which clustering may exist is often unknown, the test has often
been applied for a whole range of possible values (e.g., Gilman and Knox, 1995 [14]).
This is valuable for estimating the scale of clustering, but it also introduces multiple
testing, and if the test is significant for some critical distances but not for others, as in
Table 6, then the result is hard to interpret. One solution is to apply some Bonferroni-
type adjustment, but because the different tests for different critical distances are statis-
tically dependent, such a procedure is overly conservative and is not commonly used.
Using the same basic idea as Baker (13), one can obtain an unbiased combined Knox test
as follows.
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Note: In parentheses are the biased p-values from the ordinary Knox test using the Poisson and Barton-David
approximations (Poisson/Barton-David). Adjusting for the multiple testing, the unbiased combined p-value is
.472.

Table 5 Unbiased p-values When the Knox Test Is Applied to 9,254 Cases of Lung Cancer in
New Mexico, 1973–1991, Using Different Critical Distances



1. For the real and random datasets, calculate the test statistic Xd for each of several
combinations of critical distances.

2. For each choice of critical distances, calculate the normalized test statistic N(Xd)
as described in “An Unbiased Knox Test.”

3. For each dataset, select the maximum value of N(Xd) taken over all sets of criti-
cal distances, M=maxdN(Xd).

4. Rank the maximum values M coming from the real and random datasets. If the
former is among the 5% highest, reject the null hypothesis of no space-time in-
teraction at the 5% significance level. The corresponding simulated p-value is as
before—R/(REP+1), where R is the rank of M from the real dataset and REP is
the number of Monte Carlo replications.

For the Swedish childhood leukemia data presented in Table 6, the p-value for the
unbiased combined Knox test is 0.237. This indicates that there was no significant
space-time interaction of childhood leukemia in Sweden during the period 1973–1994.
From an epidemiological viewpoint, though, it is not necessarily the union of all types
of leukemia that is of primary interest in a space-time analysis. More detailed analyses
by subgroup will be presented in a medicine-oriented paper.

A combined Knox test can be seen not only as a way to account for the multiple test-
ing of several Knox tests, but also as a test in itself to be compared with other space-
time interaction tests. Some of these, including Mantel (1), were proposed precisely to
avoid the arbitrariness in the choice of critical distances. They are not the same as the
combined Knox test, though.
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Note: In parentheses are the biased p-values from the ordinary Knox test using the Poisson and Barton-David
approximations (Poisson/Barton-David). Adjusting for the multiple testing, the unbiased combined p-value is
.237.

Table 6 Unbiased p-values When the Knox Test Is Applied to 1,592 Cases of Childhood
Leukemia in Sweden, 1973–1994, Using Different Critical Distances



Mantel (1) and Diggle et al. (12) sum up the value of several Knox tests and use the
combined sum as an omnibus test statistic. Diggle et al. do the summation for a finite
set of critical distances, while Mantel uses a general function leading to continuous
summation (integration) if the function is continuous, and to the ordinary Knox test if
a dichotomous indicator function is used. The combined Knox test, on the other hand,
picks the maximum rather than the sum over a finite set of critical distances.

The choice of method depends on the set of alternative hypotheses for which the
user wants to maximize the statistical power. An advantage of the approaches taken by
Mantel and Diggle et al. is that they model a gradual decrease in the strength of space-
time clustering with increasing distance. A drawback is that the relative strengths at dif-
ferent distances have to be specified a priori. The combined Knox test, on the other
hand, models an abrupt cutoff point just like the ordinary Knox test, in which the
strength of space-time clustering is constant within the critical distance and zero out-
side. Unlike the Knox test, though, the critical distances do not need to be specified a
priori, and unlike the Mantel and Diggle et al. tests, the relative strengths of clustering
at different distances need not be specified. This has two advantages. It is not necessary
to limit the scale of space-time interaction to be tested for, and the result provides not
only an overall p-value but also, if the result is significant, an indication of the scale at
which the space-time interaction operates.

Discussion

In looking at the population shift bias of space-time interaction tests, we have focused
on the Knox method because it is the method most widely used for epidemiological
data. Such bias is also present in other space-time interaction tests, proposed by David
and Barton (10), Mantel (1), Pike and Smith (11), Diggle et al. (12), Jacquez (4), and Baker
(13). The Mantel test, and even more so the Jacquez test, have been shown to have
higher power than the Knox test for certain alternative hypotheses (4). Ironically, this
also means that the population shift bias is higher, because a test’s population shift bias
is simply its power to detect the space-time interaction inherent in the population dis-
tribution. Fortunately, the procedure for constructing the unbiased Knox test can also
be used for the Mantel and Jacquez tests, in the same simple fashion.

An unbiased combined Jacquez test would be especially attractive. Rather than
using fixed geographic distances as Knox (5), Mantel (1), and Diggle et al. (12) have
done, Jacquez (4) defines distances in terms of nearest neighbors, so that cases 1 kilo-
meter apart are considered to be close to each other in a rural area but not necessarily
so in a densely populated city. This increases the power when there is space-time inter-
action in less-populated areas.

No matter which space-time interaction test is used, it would have been ideal to
show that, for practical purposes, the population shift bias is more or less irrelevant.
Unfortunately, that is not the case (see “Estimation of the Population Shift Bias”). This
leads to two questions: How do we do this type of analysis in the future? How do we
interpret past results in light of the bias that may be associated with them?

To perform an unbiased test for space-time interaction in an area, we need under-
lying population data for that area. These data are sometimes harder to get than the case
data. If a proper test is to be performed, there is no way around this, but in some cases
there is a shortcut. The ordinary space-time interaction tests are all liberal. Therefore,
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we know that if there is no significant space-time interaction using the ordinary test,
then space-time interaction will not be significant according to the unbiased version.
This suggests a two-stage procedure. First, collect only the case data and use one of the
ordinary space-time interaction tests. If the result is non-significant, then there is no
need to obtain the population data and the negative results can be published as such. If
the result is significant, though, the population shift bias may be affecting it. It is then
important to obtain population data and apply the unbiased version before making any
conclusions.

Caution should be used in interpreting results that have already been published. If
a result is non-significant, then it is fine. If the study period was only one or two years,
the population shift bias is probably not a major problem because differential changes
in population sizes did not have much chance to accumulate. For datasets spanning 10
or 20 years, though, there is really no way of knowing how reliable the results are with-
out reanalyzing the data using an unbiased approach. For any past results that are con-
sidered important from an etiological or public health standpoint, we recommend that
the data be reanalyzed using the unbiased version of any of the space-time interaction
tests.
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